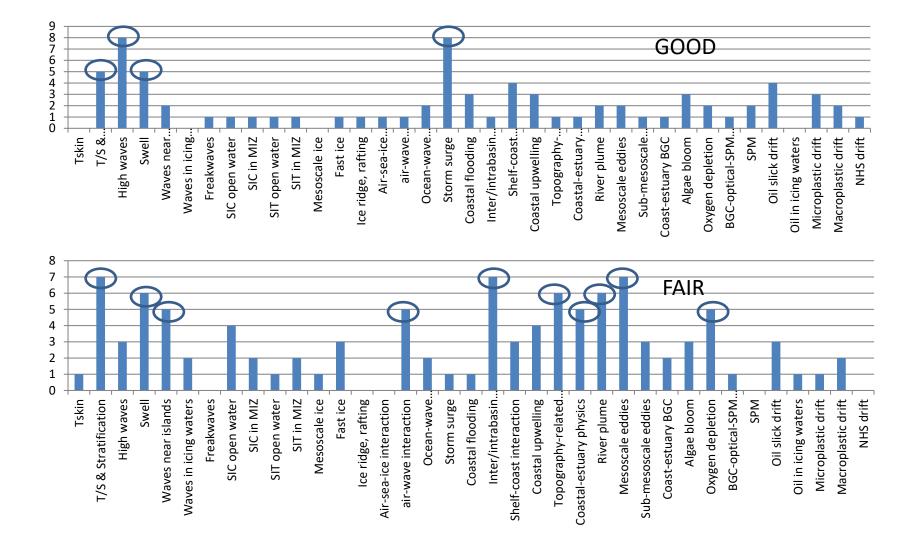


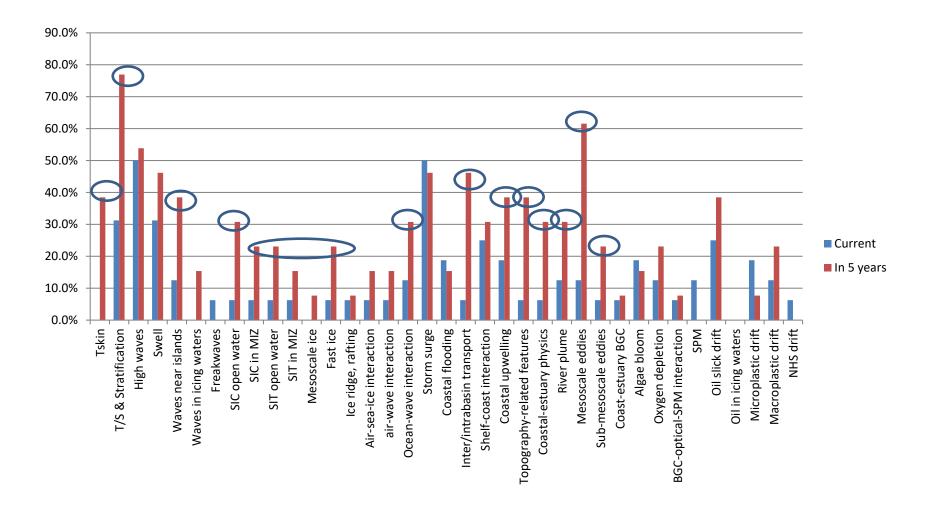
Future forecasting service and related challenges on modelling, observing and their integration

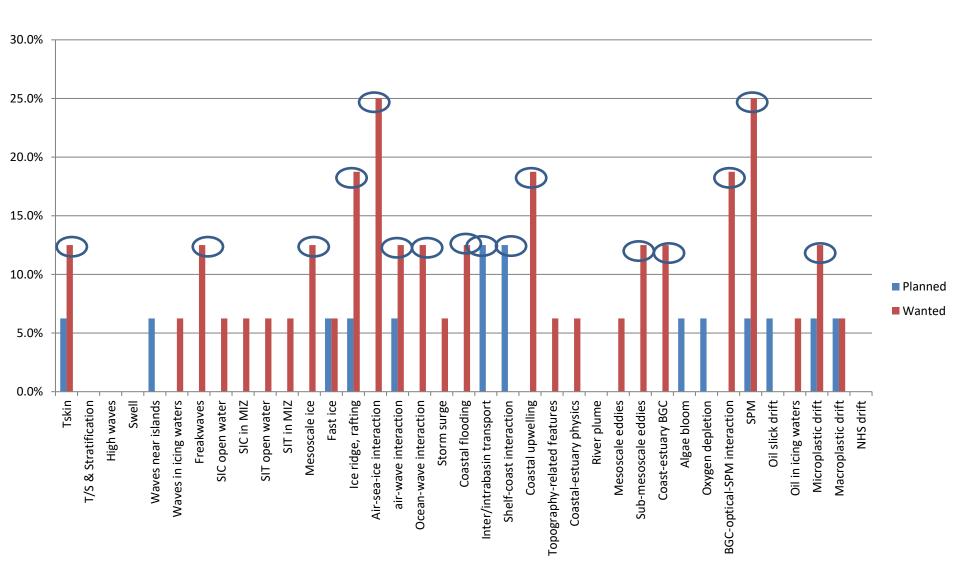
Jun She (DMI) and Vicente Fernández (EuroGOOS) On behalf of EuroGOOS SAWG, with contributed from:

Jari Haapala (FMI), Laurent Bertino (NERSC), Yoana Voynova (HZG), Johannes Röhrs (Met.no), Stephan Dick (BSH), Carlos Barrera (PLOCean), Gianpiero Cossarini (INOGS), GEORGIOS SYLAIOS (DUTH), El Serafy, GY (Deltares), Manuel Espino (UPC), Hrvoje Mihanovic (IZOR), Tomasz Dabrowski (MI), Boris Petelin (NIB), John Siddorn (MetO), Sébastien Legrand (RBINS), Koen Vanstaen (MDK)


Introduction to the survey

- **Rational:** forecasting capacity is at the centre of operational service
 - Identify forecast challenges: for future seamless forecasting, 38 physical-BGC forecasting challenges (mainly for the coastal-shelf seas) have been identified.
 - The objective of the survey:
 - Understand current status of forecasting capacities: advancement level, commonality and variability
 - Near future planning on improving forecast capacities
 - Ecpectations in 5 year time
 - R&D activities needed
 - Observation and monitoring needed
 - Attendees: research managers and contact points of all EuroGOOS partners
- Outcome:
 - 17 institutes replied, representing Arctic, Baltic Sea, North Sea, IBI, NE Atlantic and Med. Sea
 - Due to limited time, results from MDK has not been included in this presentation


Good and fair forecast capacities: current and in 5 years


Good forecast capacities: current and in 5 years

Planned and wanted capacities

Mid-term (5year) capacity development

2	Area	Arctic	Baltic	Baltic-N	orth Sea	North Sea	NW Shelf	NW Shelf,	Atlantic	IBI	Med. Sea	Med Sea	Med. Sea	Med. Sea
3		NERSC	FMI	DMI	BSH	HZG	RBINS	MetO	PLOcean	MI	INOGS	DUTH	IZOR	LEM
4	Tskin	NA	NA	tested	Good	N/A	NA	тві	Good	Good	N/A	Good	Fair	Good
5	T/S & Stratification	Good	Good	Good	Good	N/A	Good	Good	Good	Good	N/A	Good	Fair	Good
6	High waves	Fair+	Good	Good	N/A	N/A	Fair	Good	Good	Good	N/A	Good	Fair	Good
7	Swell	Fair	Fair	Fair	N/A	N/A	Good	Good	Good	Good	N/A	Good	Fair	Good
8	Waves near islands	тві	Good	Good	N/A	N/A	Good	Good	тві	Good	N/A	Planned	Fair	Fair
9	Waves in icing waters	Fair	Good	Good	N/A	N/A	N/A	Fair	тві	N/A	N/A	N/A	N/A	N/A
10	Freakwaves	N/A	N/A	тві	N/A	N/A	тві	NA	тві	N/A	N/A	N/A	N/A	N/A
11	SIC open water	Good	Good+	Good	Good	N/A	N/A	Fair	тві	N/A	N/A	N/A	N/A	N/A
12	SIC in MIZ	Fair	Good+	Good	Good	N/A	N/A	Fair	тві	N/A	N/A	N/A	N/A	N/A
13	SIT open water	ТВІ	Good	Fair	Good	N/A	N/A	Fair	Good	N/A	N/A	N/A	N/A	N/A
14	SIT in MIZ	тві	Good	Fair	Good	N/A	N/A	Fair	тві	N/A	N/A	N/A	N/A	N/A
15	Mesoscale ice	Fair	Fair+	tested	Fair	N/A	N/A	Wanted	Good	N/A	N/A	N/A	N/A	N/A
16	Fast ice	Good	Good+	Fair	Good	N/A	N/A	Fair	тві	N/A	N/A	N/A	N/A	N/A
17	Ice ridge, rafting	Fair	Good	Fair	Fair	N/A	N/A	тві	ТВІ	N/A	N/A	N/A	N/A	N/A
18	Air-sea-ice interaction	tested	Fair	Fair	Fair	N/A	Wanted	Good	Good	N/A	N/A	N/A	N/A	N/A
19	air-wave interaction	tested	Fair	Fair	N/A	N/A	Planned	Good	Good	Tested	N/A	Wanted	Fair	Fair
20	Ocean-wave interactior	tested	Good	Good	N/A	N/A	Fair	Good	Good	Fair	N/A	Wanted	Fair	Fair
21	Storm surge	Fair	Good+	Good	Good	N/A	Good	Good	ТВІ	Good	N/A	Wanted	Fair	Fair
22	Coastal flooding	N/A	NA	Good	N/A	N/A	Wanted	Good	тві	Fair	N/A	Tested	Fair	Fair

Red: means capacities expected to be improved

Mid-term (5year) capacity development

23 Area	Arctic	Baltic	Baltic-N	orth Sea	North Sea	NW Shelf	NW Shelf,	Atlantic	IBI	Med. Sea	Med Sea	Med. Sea	Med. Sea
24	NERSC	FMI	DMI	BSH	HZG	RBINS	MetO	PLOcean	MI	INOGS	DUTH	IZOR	LEM
25 Inter/intrabasin transpo	Good	Good	Good	Good	N/A	N/A	Good	тві	Good	N/A	Tested	Fair	N/A
26 Shelf-coast interaction	Good	N/A	N/A	Good	Tested	Fair	Good	тві	Good	N/A	Planned	Fair	Fair
27 Coastal upwelling	Good	Fair+	Good	Good	N/A	N/A	Fair	Good	Good	N/A	Planned	Fair	Fair
28 Topography-related fea	Good	N/A	Good	Good	N/A	Good	Fair	тві	Fair	N/A	Wanted	Fair	Good
Coastal-estuary physics	NA	Fair	Good	Good	Tested	Good	тві	тві	Fair	N/A	Fair	N/A	Good
30 River plume	N/A	N/A	Good	Good	Tested	Good	Fair	тві	Fair	N/A	Fair	N/A	Good
31 Mesoscale eddies	Good	Fair	Good	Good	N/A	Good	Good	Good	Good	Fair	Planned	Fair	Good
Sub-mesoscale eddies	tested	Fair	Fair	Fair	N/A	Good	Fair	тві	Good	Fair	Planned	Fair	Good
33 Coast-estuary BGC	N/A	NA	Fair	Fair	N/A	tested	тві	тві	N/A	N/A	Wanted	N/A	Good
34 Algae bloom	Fair	NA	Good	Fair	Tested	tested	Good	тві	тві	Fair	Fair	N/A	N/A
35 Oxygen depletion	тві	NA	Good	Good	Tested	tested	Good	тві	тві	Fair	Fair	N/A	N/A
BGC-optical-SPM	тві	NA	tested	Planned	N/A	tested	Good	тві	N/A	Fair	Tested	N/A	N/A
36 interaction	ТЫ	INA	lesteu	riaimeu	N/A	lesteu	300u	ТЫ	N/A	raii	resteu	N/A	N/A
37 SPM	N/A	Fair	Fair	Planned	N/A	тві	NA	тві	N/A	N/A	Fair	N/A	Fair
38 Oil slick drift	тві	Good	Good	Good	N/A	Good	NA	тві	N/A	N/A	тві	N/A	Good
39 Oil in icing waters	Tested	тві	Tested	Fair	N/A	Wanted	NA	тві	N/A	N/A	тві	N/A	N/A
10 Microplastic drift	Tested	NA	Fair	Tested	Planned	Wanted	NA	тві	Good	N/A	тві	N/A	Good
11 Macroplastic drift	Tested	NA	Fair	Planned	N/A	Wanted	NA	Good	Good	Tested	тві	N/A	Good
12 NHS drift	N/A	NA	NA	N/A	N/A	Fair	NA	тві	N/A	N/A	тві	N/A	N/A

Red: means capacities expected to be improved

Summary on current and future forecast capacities

- Advancement level:
 - Good forecast: high waves and storm surge (50%); T/S, stratification and swell (31%)
 - Fair forecast: T/S, stratification, swell, waves near islands, air-wave coupling, inter-basin transport, coastal-estruary, river plume, mesoscale, topo, oxygen depletion
 - Less advanced area: skin temperature, freak waves, SIT, ice ridge/rafting, atmosphere-ocean coupling, BGC-optics-SPM coupling, SPM, oil drift in icing waters. Coastal flooding and plastics modelling are also under-developed areas.
- Future capacity in 5 years
 - Atmosphere-ocean-ice coupling, SPM, BGC-optics-SPM coupling, coastal upwelling and ice ridge/rafting are the most wanted features
 - Planned activities are much less than "wanted" ones. Inter-/intra-basin transport, and coastalshelf interaction are the top two planned activities, others include palstic modelling, SPM, algae bloom, skin temperature, oil drift etc.
- Limitations:
 - The results may be biased due to following reasons:
 - Only 17 out of 44 EuroGOOS partners participated the survey
 - The person who answered the survey may not be the one who is in charge of forecast development
 - Some participants are non-operational institutes

Area	Arctic	Baltic	NW Shelf, Global	Atlantic/IBI	Med. Sea
Waves (high & freak, swell, etc.)	coupling weather forecasting, HR modeling, Breaking of ice, nonlinear wave modeling	3D ocean-atmosphere, wave-ice coupling, improved subgridscale modelling, unresolved islands, bathymetry, refraction, reflection, EPS	EPS,DA, HR / grids, better use of computational resource (domain decomposition)	Sustainable platform/ sensing for continuous monitoring + DA tools and protocols + best practices, HR near coasts	Improved grids,
lce (concentratio n, thickness, dynamics, etc.)	Sea ice rheology, melt ponds, Ocean currents, weather- snow-ice interface, Ice DA, upper layer mixing, better use satellite data	increased resolution, coupled models, new rheologies, prognostic parameterisation of fast ice, ice DA, upper layer mixing			
T/S (skin temperature, stratification, etc.)	DA (T/S), Improved turbulence mixing	DA (T/S), improved turbulence mixing, wave-ocean coupling, Tskin prediction model	DA (T/S), Improved turbulence mixing	Sustainable platform/ sensing for continuous monitoring + DA tools	
Storm surges	Consistency with 3D ocean, improved resolution, bathymetry, drag	Ensembles, improved resolution, bathymetry, unstructured grids, drag	Sub-surface platforms eg gliders, EPS, DA, HR, improved understanding of tide / surge aliasing, bathymetry, drag	and protocols + best	Sensor deployment for model validation and DA, Flooding capability, HR

Area	Arctic	Baltic	NW Shelf, Global	Atlantic/IBI	Med. Sea
Inter-basin transports	Improved ocean model numerics, bathymetry	Improved grids (unstructured), HR, bathymetry	higher resolution and improved bathymetry	Sustainable platform/sensing for continuous	DA, Improved grids
Coastal Upwelling	better atmos. momentum, coupling, mixing	Ocean-wave(- atmosphere) coupling, increased resolution	better atmos. momentum, coupling, mixing	monitoring + DA tools and protocols + best practices,	DA, Improved grids, HR atmospheric forcing
Shelf-cost interaction	Improved ocean model numerics, bathymetry		HR, numerics / vertical grids, sub- mesocale parameterisation, bottom sensors and modelling	validation and mapping, HR coastal models	DA, HR, land-sea interaction (earth system model)
Mesoscale & sub- mesoscale dynamics	Improved model numerics, higher resolution, DA;	Improved resolution, DA; SAR/ferrybox	Resolution, atmo- wave-ocean coupling, Improved resolution, DA; SAR/ferrybox		DA, EPS, increasing resolution, Turbulence and mixing
River plume		Improved resolution, river temp., DA	Fully land surface /atm / ocean coupling, HR, river temp., DA, extremes, EPS	need realistic river runoffs rather than climatologies	EPS, HR, coupling, Better river forcing, Integrated watershed- coastal zone model development

Area	Arctic	Baltic	NW Shelf, Global	Atlantic/IBI	Med. Sea
Algae bloom Oxygen depletion BGC-optical- SPM-physical interaction	Optical properties, mixed layer, BGC modeling	Skin temperature forecast, chl-a DA, BGC modelling, parameterizations, DO reinitialization, coupling of BGC model to SPM dynamics	Improved BGC model & DA (incl multivariate- optical), HR,	Sustainable platform and sensing for continuous monitoring + DA tools and protocols + best practices, develop bgc models	improve BGC parameterization, sensor deployment, coupling spectral optical model with BGC model
Suspended sediment transport	N/R	Further calibration and process study	Further calibration and process study	Sustainable platform and sensing for continuous monitoring + DA tools	DA, Improved grids
Pollutant drift (oil slick, micro & macro plastic, NHS, etc.)	Diffusion	Wave-ice-ocean coupling, oil drift in ice, R&D on monitoring and modelling of micro-/macro plastics, resolving wave-induced transport, sedimentation, resuspension and biofouling, code optimization, automatization, better input data, EPS	Microplastics from VOS, code optimization, automatization, better input data, ensemble modelling, DA	and protocols + best practices, Parameterize particle tracking models, e.g. include windage effects for macroplastics, release drifters for validation	Improve hydrodynamic model grid resolution, DA, EPS

Summary on R&D for forecast challenges

- Different regions give different R&D priorities
- EPS, DA, HR and coupling are common ones
- Improved bathymetry, grid and drag in Baltic-North Sea
- Extensive model validation needed
- Processes: ice rheology, submesoscale eddies etc.
- There are still lack of roadmaps to address the "emerging" forecasting challenges

Area	Arctic	Baltic	NW Shelf,	Atlantic	Med. Sea
			Global		
Waves (Wave spectra from satellite once per	Coastal wave	HF Radar, in	Sustainable	HF radar
high &	day, SAR coverage once per day, wave	observations, improved	situ wave	platform and	needed,
freak,	buoys in high Arctic (Svalbard,	nearshore satellite wave	observations	sensing for	wave buoys,
swell,	Greenland, East Siberian Isl., Jan	data, wave observations		continuous	satellites
etc.)	Mayen), Floe size distribution, ice	from partly ice-covered		monitoring	
	classification, wave buoys (super	areas			
	resistant)				
Ice	Passive Microwave (big antenna) daily,	improved classification of			
(concentr	passive Microwave (big antenna), ice	satellite data for			
ation,	drift daily, Snow depth, Ice Mass	assimilation			
thickness	Balance buoys, EM surveys, Radar				
,	altimeters, low-freq. passive				
dynamics	microwave (SMOS) +/-10% accuracy,				
, etc.)	ice drift daily from SAR ice drift daily at				
	5 km resolution, bathymetry, satellite				
	SAR daily, visible satellite coverage				
T/S (skin	Moorings and satellite winds, waves,	Air-sea flux, open sea	Flux		
temperat		weather stations, in-	observations,		
ure,	waves at HR from satellites, currents	situ/satellite wind, waves,	CFOSAT data,		
stratificat	and waves from satellites (SKIM); Argo	currents, T/S and waves;	in-situ wind		
ion, etc.)	floats and Ice-Tethered Profilers	NRT delivery of CTD data,	and waves, in		
		NRT Argo data from all	situ currents		
		sub-basins, NRT Glider	and waves; in		
		data, CFOSAT data, in situ	situ Tskin &		
		Tskin & profiles			

Area	Arctic	Baltic	NW Shelf, Global	Atlantic/IBI	Med. Sea			
Storm surges	Improved processing of satellite altimeter, tide gauges in High Arctic	Nearshore SLA, more offshore data for validation	HF radar, SWOT, more offshore data	Sustainable platform and sensing for di continuous a monitoring, satellite geostrophic di currents in-situ temperature sensors, satellite SST, satellite sea di level di	platform and sensing for continuous monitoring, satellite geostrophic currents in-situ temperature	platform and sensing for continuous	platform and sensing for continuous	Tide gauges, wave buoys, LIDAR bathymetry/topogr aphy, HF radar,
Inter- basin transports	Mooring arrays, regular sections; hydrographic sections	in-situ currents, T/S & nutrients in Danish straits- Arkona, Baltic Proper-Åland Sea – Bothnian Sea, and at the entrance and centre of subbasins	in-situ currents, T/S and nutrients in Danish Straits, and at the entrance and centre of subbasins			CTD and ADCP moorings		
Coastal Upwelling Shelf-	SST and hydrographic sections in upwelling areas Moorings	In-situ SST, T/S profiles and currents in upwelling areas	In-situ SST and currents in upwelling areas Improved sharing of		BGC-glider and fixed buoys with BGC-sensors, HF radar BGC-glider, BGC-			
	SAR, SST, SWOT, SKIM, drifters	SAR, SST, ferrybox, glider	coastal data, offshore measurements SWOT, SAR, SST, FB, glider, HF radar		buoys, gliders, ADCP moorings HF radar measurements			
River plume	SAR, floats, moorings; River inputs from hydrological models	In situ currents, T/S in areas with complex topography; Near-shore satellite data, in- situ T/S, waves, currents, chl-a, nutrients, FB, SAR, Sentinel chl-a, river loads	SAR, in-situ T/S, currents; Sentinel chl-		Flow measurements, HF radar, satellites			

Area	Arctic	Baltic	NW Shelf, Global	Atlantic/IBI	Med. Sea
Algae	Ocean colour daily, bio-	Dedicated field	Bio Argo, DO,	Sustainable	BGC-Argo and
bloom	Argo; satellite chl-a,	experiments for algae	pCO2, pH, Chl	platform and	BGC-glider, on-
	river loads, in-situ chl-a,	bloom process study; SAR,	sensors, SAR,	sensing for	line sensor
	nutrients, ferrybox;	Sentinel chl-a, river loads,	Sentinel chl-a, river	continuous	
	Nutrient fluxes from	in-situ chl-a, nutrients,	loads, in-situ chl-a,	monitoring,	
	hydrological models	ferrybox, DO, pCO2, pH,	nutrients, ferrybox	more in-situ data	
		Chl sensors		for validation,	
Oxygen	O2 measurments, Bio-	Increased moorings with	Bio Argo, more	clear guidance	BGC-Argo float
depletion	ITPs	bottom DO	sub-surface	on which satellite	(Delayed mode
		measurements, more sub-	measurements,	product(s) is best	PQ for oxygen),
		surface measurements	Bottom water DO	for a given area,	on-line sensor
			sensors	more in-situ	
BGC-	Ocean colour daily, bio-	dedicated field	dedicated field	platforms (fixed,	
optical-	Argo	experiments needed	experiments	Argo, gliders)	
SPM			needed		
Suspended	SPM from Arctic rivers	In -situ and satellite SPM	In -situ and	Sustainable	Measurements
sediment		observation, near-bottom	satellite SPM	platform and	needed
transport		currents	Observation	sensing for	
			needed, Turbidity	continuous	
			sensors	monitoring	
Pollutant	Surface currents from	drift/mixing	data of drift		Satellite
drift (oil	space (SKIM), Oil slicks	measurements, new	experiments, new		
slick, micro	in sea ice and below sea	monitoring data of micro-	monitoring data of		
& macro	ice, ice drift; sources of	and macroplastics, and	micro-macro		
plastic,	microplastics &	source mapping,	plastics, and		
NHS, etc.)	macroplastics		source mapping		

Summary on ocean observing needs for forecast challenges

- Use of new satellite observations: SAR, SWOT, SKIM, CFOSAT, Sentinels etc.
 - Data assimilation
 - Observation analysis.
- Use of high resolution coastal data to address emerging areas in coastal-estuary continuum, small scale phenomenon.
- NRT delivery of CTD and nutrient data
- New observations for emerging challenges
- Establish useful databases
- Dedicated field experiments and integrated modellingobservation analysis to address "emerging" forecasting challenges

Final remarks

- The survey should be further improved with inputs from more partners and corrected inputs from the right persons
- Existing outcomes are already inspring.
- The outcomes should be disseminated to ROOSs for further exploitation
- ROOSs should enrich the existing outcomes for developing a strategy on developing future regional seamless forecast capacity

Thank you for your attention